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Abstract
In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Review-
ing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network 
(CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, 
thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with 
an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their 
salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth 
and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose 
clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred 
unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast 
measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. 
Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial 
volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-
kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, 
thin, low-noise series suitable for both brain and skull imaging.
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Background

X-ray computed tomography (CT) is one of the most widely 
used and clinically impactful imaging modalities, with over 
80 million CT exams performed annually in the USA [1]. 
Due to increasing patient loads and technological advances, 
radiologists are often faced with the challenge of interpreting 
multiple CT image series in a very limited amount of time. 
Considering just a single CT series can consist of hundreds 
or even thousands of detailed slices of a 3D volume, this 
quickly leads to information overload. Information overload 

can hinder efficiency and contribute to reader fatigue [2–6]. 
One of the main reasons for needing multiple image series 
for a single exam is the well-known trade-off between spa-
tial resolution and noise that is primarily determined by 
the reconstruction kernel. Thus, radiologists must typically 
review a smooth-kernel (low-noise) series for low-contrast 
features, and sharp-kernel (high-noise) series for small-scale 
and high-contrast features. Achieving both smooth and sharp 
characteristics in a single series cannot be done today with 
traditional reconstruction methods.

Several approaches have been proposed to increase the 
efficiency of CT image viewing by combining multiple 
task-specific series into a single series that is appropriate 
for multiple imaging tasks, a process referred to hereafter 
as multi-kernel synthesis [7–12]. Hounsfield unit (HU) 
threshold-based synthesis techniques consist of replacing 
image pixels obtained with smooth kernels and correspond-
ing to high-contrast bone anatomy with sharp-kernel pixels, 
producing a single image with matched diagnostic perfor-
mance as the two individual kernel images [10, 11]. Other 
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approaches utilizing iterative reconstruction avoid boundary 
discontinuities by spatially varying their regularization func-
tion over different anatomy to control the local smoothness, 
but at the cost of increased computation time [8]. A more 
recent approach to multi-kernel synthesis used a convolu-
tional neural network (CNN) denoising model with multiple 
input channels yielding improved noise reduction and sharp-
ness preservation [9].

While CNN-based kernel synthesis was shown to be 
promising for abdominal imaging applications, CT imag-
ing of the head poses additional challenges that are specifi-
cally addressed in this work. Compared to routine abdominal 
imaging, head imaging requires a wider range of sharp and 
smooth kernels, each having specialized post-processing. 
Reconstruction kernels offering high-spatial resolution and 
edge enhancement are routinely used to assess fractures in 
the skull. On the other hand, low noise is needed to detect 
the small HU differences relevant to brain imaging, such 
as between gray and white matter. To improve gray-white 
matter differentiation and aid in the detection of low-contrast 
lesions, smooth reconstruction kernels specific for the head 
sometimes include additional post-processing steps [13]. 
Additionally smooth-kernel image series are reconstructed 
with greater slice thickness to compensate for noise, which 
reduces the visibility of small low-contrast features due to 
partial volume averaging.

To account for this and other customized kernel features 
for head imaging, a new framework, synthesiZed Improved 
Resolution and Concurrent nOise reductioN (ZIRCON), is 
introduced, expanding upon previous CNN-based multi-
kernel synthesis methods [9]. ZIRCON is a denoising and 
image synthesis CNN-model that uses a unique loss func-
tion with two complementary loss terms to parameterize 
training. In this exploratory study, we introduce ZIRCON 

and evaluate the ability to reduce noise and enhance soft-
tissue contrast in the brain while preserving sharp details in 
the skull, effectively combining the favorable image quality 
features of each input kernel into a single image series opti-
mized for imaging of the head.

Methods

Methodology

A schematic diagram of the ZIRCON model optimization 
framework is illustrated in Fig. 1. In the training phase, 
simulated low-dose (LD) images from a smooth kernel and 
a sharp kernel are concatenated along the channel dimension 
and passed to a CNN model based on the U-Net architecture 
[14]. The CNN produces a single output image correspond-
ing to a synthesized image with both low noise and high 
spatial resolution. The synthesized image is compared to 
the corresponding routine-dose (RD) images using a task-
based loss function consisting of two terms, and the model 
weights are updated using a variant of stochastic gradient 
descent. Training and evaluation of this framework was per-
formed using retrospective data. Details regarding the data 
generation, model, loss functions, and evaluation methods 
are described in the following sections.

Data Preparation

A dataset consisting of CT images of patients with sus-
pected head trauma was collected retrospectively from 
exams performed in August and September 2020 to demon-
strate the clinical utility of the ZIRCON framework under 
a protocol approved by our Institutional Review Board. 

Fig. 1   Summary of ZIRCON task-based loss training method. 
Smooth- and sharp-kernel low-dose images are given as model train-
ing inputs. After passing through a denoising U-Net CNN model, pix-
els in the range of brain HUs ( 0HU < z

(

r⃗
)

< 80HU) are smoothed 
via domain conversion before calculating Lsmooth from the matching 

routine-dose smooth-kernel image pixels. Pixels outside the brain HU 
range are compared to the matching routine-dose sharp-kernel image 
pixels, Lsharp . (ZIRCON = synthesiZed Improved Resolution and 
Concurrent nOise reduction; CNN = convolutional neural network; 
HU = Hounsfield unit)
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Inclusion criteria considered patients who underwent 
head CT exams in the emergency department for trauma 
or acute-onset symptoms suspected of fracture, intracranial 
hemorrhage, and/or infarction. A total of 585 cases were 
collected. Screening by a radiologist fellow revealed acute 
findings in 82 patients (hemorrhage ( N = 52 ), hemorrhagic 
brain infarction ( N = 2 ), infarction ( N = 15 ), metastasis 
( N = 2 ), fracture ( N = 6 ), and both fracture and hemor-
rhage ( N = 5)). Screening was performed comparing the 
clinical CT report, and imaging findings, as well as any 
prior and subsequent imaging exams and reports in the 
electronic medical record. This study was approved by an 
Institutional Review Board, is compliant with standards 
from the Health Insurance Portability and Accountability 
Act (HIPAA), and all patients permitted use of their clini-
cal records for research purposes.

These exams were performed as part of routine 
patient care using commercially available CT scanners 
(SOMATOM Force, Siemens Healthineers GmbH, Forch-
heim, Germany) and a protocol specific to head trauma: no 
contrast agent, 1-s rotation, 192 × 0.6 mm collimation, 0.6 
pitch, 120 kV tube potential, 350 effective mAs, 250 mm 
reconstructed field of view, and no tube current modula-
tion with a CTDIvol of 49.7 mGy. A previously validated 
projection-domain noise-insertion tool [15] was used to 
simulate exams with a dose level corresponding to 25% 
of the routine dose. Multiple CT image series were recon-
structed and deidentified using a dedicated offline recon-
struction workstation (ReconCT, Siemens Healthineers) 
to create the training dataset and the clinical reference 
images (Table 1). The training images were reconstructed 
using weighted filtered backprojection, whereas the clini-
cal reference images were reconstructed using iterative 
reconstruction with a medium strength setting.

From this dataset, 110 exams from unique patients 
were randomly selected for development of the ZIRCON 
framework, including 100 for model training and 10 used 
to monitor for overfitting and for hyperparameter tuning 
(validation), with the remaining cases were reserved for 
testing and future studies. The training and validation par-
tition contained a mix of normal (N = 94) and abnormal 
(N = 16) cases. The training data was randomly cropped 

into 300,000 image patches with a size of 64×64 pix-
els. No augmentation or other normalization was applied 
to the data a priori, although the proposed U-Net [14] 
model included a preprocessing layer described in the 
next section. The training inputs consisted of paired 
smooth-kernel and sharp-kernel images patches from the 
simulated quarter dose data, with the “labels” being the 
corresponding routine dose patches. Although training 
was performed on image patches, a fully convolutional 
model was used, so inference was performed directly on 
full-size (512×512) images.

Model Optimization

Network Architecture

A residual U-Net [14] variant with randomized initial 
weights (Glorot initialization) was chosen as the CNN archi-
tecture for this study. A CT-specific preprocessing layer was 
added prior to the first convolutional layers that generated 
normalized feature maps based on standard clinical CT 
window settings for soft tissue, bone, and brain imaging. 
This preprocessing layer subtracted the window level for 
each pixel and then divided by the window width, with the 
outputs for each window setting concatenated in the chan-
nel dimension. These features were then fed into a shallow 
U-Net with residual blocks (Fig. 2). Network implementa-
tion and optimization was performed using Tensorflow [16]. 
Optimization was performed over 100 epochs with the Adam 
optimizer and a step-decay learning rate scheduler with a 
starting rate of 0.001, a decay factor of 0.25, and 3 decay 
steps over the training period. The batch size used during 
training was 26.

Task‑Based Loss Function

The choice of loss function is critical to ensuring that the 
CNN achieves the desired mixing of features from the 
smooth-kernel and sharp-kernel images. In this work, we 
propose a “task-based” loss function that consists of the sum 
of two terms: Lsharp and Lsmooth.

Table 1   Image reconstruction 
settings and noise levels used 
for generating the image series 
used in this study. The noise 
levels were measured within a 
2.4 cm2 uniform region of the 
vitreous body in a representative 
case from the training data

LD low does, RD routine dose

Series description Kernel Thickness [mm] Increment 
[mm]

Relative dose 
[%]

Approx. noise 
level [HU]

Smooth LD Hr40 0.75 0.7 25 12.8
Sharp LD Qr69 0.75 0.7 25 80.1
Smooth RD Hr40 0.75 0.7 100 6.0
Sharp RD Qr69 0.75 0.7 100 34.5
Smooth RD reference Hr40 5.0 5.0 100 3.2
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The decomposition of the loss function into two terms 
related to specific diagnostic tasks encourages the model to 
preserve image features relevant for both tasks in the output 
image. Thus, Lsharp should emphasize high-resolution fea-
tures for visualizing the bones of the skull, whereas Lsmooth 
should emphasizes the low-contrast features that are critical 
for diagnostic brain imaging.

The task-based loss terms used in this work were empiri-
cally defined as follows:

Here, z denotes the CNN output image, xsharp denotes the 
RD sharp-kernel reference image, and xsmooth denotes the RD 
smooth-kernel image. The symbols Dsharp and Dsmooth repre-
sent pixel-wise weighting factors that are derived from the 
HU values in the sharp-kernel and smooth-kernel images, 
respectively. The operation C(z, �) denotes convolution with 
a Gaussian kernel with a standard deviation of �. TV corre-
sponds to the total variation. The global scaling parameters�
,� , and � determine the relative strength of each term. All 
multiplication is assumed to be element-wise and ||.| |

2
 is the 

L
2
 norm. The parameter values used for this study are as fol-

lows: � = 0.5,� = 7.0,� = 1e−5 , and � = 0.47 mm.
The pixel-wise weighting factors Dsharp and Dsmooth were 

calculated using binary thresholding with distance transfor-
mations to smooth the boundaries between regions. First a 
binary mask was created to mask out pixels outside of the 
range [0, 80] HU . A distance transform based on the work 
of by Dorn et al. [7] was used to generate a weighting mask 
defined by the minimum Euclidean distance to pixels outside 
of the mask. This distance transformed mask D(r⃗) was then 
truncated and normalized:

(1)Lsharp = �Dsharp
|

|

|

|

|

|

z − xsharp
|

|

|

|

|

|2

(2)Lsmooth = �Dsmooth

(

|

|

|

|

C(z, �) − xsmooth
|

|

|

|2
+ �TV(z)

)

The width of the transition between regions is defined by 
d and the rate of transition between regions is controlled by 
power p . By using smooth transitions between regionally 
weighted loss functions different image quality properties 
can be locally optimized while avoiding boundary disconti-
nuity artifacts [11]. For the current study a transition width 
of d ≥ 7 pixels were found to be sufficient. A relatively 
steep transition achieved with a cubic transition ( p = 3 ) was 
chosen to minimize loss in sharpness at the skull boundary 
while avoiding transition artifacts. Dsharp and Dsmooth then 
derive from this smoothed weighting mask

Model Evaluation

The ideal output of the ZIRCON model is a single, low-noise, 
high-spatial resolution image series that can be used to perform 
diagnostic tasks that would otherwise require multiple series 
with different reconstruction parameters. Noise magnitude in 
ZIRCON images was measured as the standard deviation in 
three regions-of-interest (ROIs) in the brain that were selected 
by the authors to have approximately uniform intensity. These 
ROIs were from a random patient in the reserved test data 
and contained no pathology. Noise magnitude in these ROIs 
was then compared to that obtained with the corresponding 
smooth-kernel reconstructions. Soft-tissue contrast in the ZIR-
CON images was measured as the absolute difference in HUs 
between white-matter ROIs directly adjacent to gray-matter 

(3)Dtrunc

(

r⃗
)

=

{

1, ifD
(

r⃗
)

> d

(D(r⃗)∕d)
p
, else

(4)Dsharp

(

r⃗
)

= Dtrunc

(

r⃗
)

(5)Dsmooth

(

r⃗
)

= 1 − Dtrunc(r⃗)

Fig. 2   Network architecture of 
the residual CNN kernel synthe-
sis model, “CNN Model,” from 
Fig. 1. Input and output images 
display the array dimensions 
for height, width, and channels, 
respectively. The numbers in 
each convolutional block denote 
the number of filters used 
(CNN = convolutional neural 
network). The minus symbol 
denotes pixel-wise subtraction
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ROIs. These measurements were then used to calculate the 
contrast-to-noise ratio (CNR) between gray- and white-matter. 
Spatial resolution was evaluated by comparing line profiles for 
the ZIRCON images and clinical sharp-kernel images across 
relevant small-scale features such as skull fractures. Finally, the 
presence of clinically relevant artifacts, such as skull bloom-
ing that can mimic subarachnoid hemorrhage, was assessed 
by visual inspection of pathological ROIs and review with a 
trained radiologist fellow. These artifacts are commonly seen in 
low dose head CT images obtained through iterative reconstruc-
tion, which is inherent to the training data set used in this work.

Results

The qualitative performance of ZIRCON is demonstrated in 
Fig. 3. Compared to the input images, ZIRCON features the 
low noise levels of the smooth kernel images while exhibiting 
the high spatial resolution of the sharp-kernel images. As exhib-
ited in the figure, these factors improve the conspicuity of a 
hemorrhage while also maintaining resolution of fine anatomic 
details. Together this combination of thin slice, low noise, and 

enhanced soft tissue contrast enhancement in the brain along 
with preserved sharpness in the skull demonstrates the primary 
benefit of ZIRCON as these image quality properties are usu-
ally mutually exclusive in a single image series.

These image quality improvements can be attributed 
to the task-based loss function defined in Eqs. 1 and 2. 
Notably, the addition of Lsmooth in the task-based loss 
function improves noise reduction and soft-tissue con-
trast compared to optimizing with a general MSE loss 
(the “ZIRCON-MSE” series in Fig. 4). Additionally, the 
task-based loss function further reduces artifacts arising 
from the commercial sharp-kernel reconstructions, such 
as the edge overshoot near the skull boundary seen in the 
bottom left panel in Fig. 4. Contrast measurements from 
elliptical ROIs in adjacent regions of gray and white mat-
ter show comparable contrast between ZIRCON and the 
thin smooth series (12.44 vs 11.98, respectively) suggest-
ing that Lsmooth was effective in learning the gray-white 
matter contrast enhancement. When combined with lower 
noise, shown by standard deviation measurements (3.50 
vs 2.65), this results in an overall higher gray-matter 
white-matter CNR in ZIRCON Task-Loss images.

Fig. 3   Visual comparison 
between both input image series 
(head smooth and head sharp 
kernels) vs ZIRCON’s single 
output. The smooth kernel input 
is shown with brain display set-
tings (ww/wl: 80/40 HU) while 
the sharp kernel input is shown 
with bone display settings (ww/
wl: 2800/600 HU). The arrow in 
the smooth kernel image identi-
fies a potential hemorrhage 
while the arrow in the sharp 
kernel image identifies a squa-
mosal suture (ZIRCON = syn-
thesiZed Improved Resolution 
and Concurrent nOise reduc-
tion; HU = Hounsfield unit)
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The performance of ZIRCON in preserving high-frequency 
details was assessed via line profile comparisons along differ-
ent regions in the skull. Figure 5a compares the performance 
of the different image series at resolving an occipital fracture. 
When trained with generic MSE loss, “ZIRCON (MSE) shows 
unsatisfactory sharpness compared to the sharp input kernel. 
After incorporating the task-based loss function, “ZIRCON 
(Task Loss)”, there is evidence of preserved sharpness. This 
holds true where the masks correctly distinguish between soft 
and bone tissue. In Fig. 5a, the visual sharpness is preserved 
between the input sharp kernel and the ZIRCON (Task Loss) 
whereas in Fig. 5b, the visual sharpness of ZIRCON (Task Loss) 
in the temporal bone region is limited by the ability to segment 
these lower intensity structures. The latter remains a challenge 
in ZIRCON’s current intensity threshold-based segmentation.

Discussion

Diagnostic CT imaging for head trauma is a challenging 
clinical scenario that places high demands on image qual-
ity. The conflicting requirements of low noise and high 
spatial resolution typically requires reviewing multiple 

image series with different reconstruction parameters to 
get a complete understanding of the patient’s medical con-
dition. If the diagnostically relevant image features could  
be combined into a single low-noise, thin-slice, sharp-
kernel image series, the workflow efficiency for the radi-
ologist could be significantly improved.

Bridging the gap between these image quality con-
straints presents a challenging task. The noise level of the 
sharp-kernel reconstructions must be reduced by a factor 
of at least 16 while also maintaining both spatial resolu-
tion and soft-tissue contrast. The results described in the 
“Results” section demonstrate that the ZIRCON frame-
work generally meets these objectives. Through noise-
regulated optimization with a task-based loss function, a 
CNN model was trained to process multiple image series 
with different reconstruction parameters and synthesize 
a single output image exhibiting the clinically relevant 
features. This opens the possibility of reducing the num-
ber of image series that need to be interpreted for com-
plex exams. Additionally, the reduced noise levels in the 
synthesized image series provide enhanced low contrast 
performance due to reduced partial volume effects in the 
thin-slice images.

Fig. 4   Comparison of soft tis-
sue performance between thin 
and thick smooth kernel image 
series, previous kernel synthesis 
model trained with generic 
MSE loss and the proposed 
ZIRCON model with a Task-
based loss (ww/wl: 80/40 HU). 
ROIs used to extract contrast 
(C) and noise (N) measure-
ments as well as the resulting 
CNR between gray and white 
matter are also displayed for 
each case (ZIRCON = syn-
thesiZed Improved Resolu-
tion and Concurrent nOise 
reduction; HU = Hounsfield 
unit; ROI = region of interest; 
CNR = contrast-to-noise ratio)
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The focus of this work is to present a proof-of-concept 
framework for training CNN models to produce extremely 
low-noise, high-resolution CT images. The proposed ZIR-
CON image synthesis method is not iterative and thus has 
reduced computation time at inference time compared to 
previous iterative reconstruction-based image synthesis. 
Additionally, by incorporating loss functions informed 
by the unique imaging requirements of head CT imag-
ing, ZIRCON can achieve improved sharpness in bone 
and better noise reduction and texture in the brain than 
previous CNN-based image synthesis (ZIRCON-MSE). 
Although we demonstrate this technique as promising 
when applied to routine-dose head CT exams, additional 

studies are required to further investigate the clinical 
impact of different noise levels and potential limitations. 
Precise evaluation of the diagnostic performance of the 
ZIRCON images will be explored in future publications. 
A preliminary radiologist evaluation of 50 head CT exams 
with a mix of pathologies in the brain (infarction, hemor-
rhage, mass) and bone (fracture) found the single ZIR-
CON series had similar diagnostic performance (in terms 
of jackknife free-response receiver operating characteristic 
or JAFROC) compared to multiple series with commercial 
reconstruction [17].

We also note some practical and technical limi-
tations that should be further explored. In terms of 

Fig. 5   Comparison of bone sharpness for different ZIRCON mod-
els compared to the sharp and smooth inputs. “ZIRCON (MSE)” is 
the ZIRCON denoising model trained with a generic mean-squared-
error loss function while “ZIRCON (Task-Loss)” is the output imme-
diately following the CNN denoising model summarized in Fig.  2 
and trained with the proposed task-based loss function Eqs. (1) and 
(2). a Line profile comparison covering a small fracture in a cortical 
bone region of the skull between different image series being investi-
gated. The center columns show the mask used in the loss function. 

The mask weight is saturated in the bone region meaning that it is 
replaced with the sharp input kernel with a blended transition near 
the boundary where the model output is progressively added. b In the 
trabecular region of the temporal bone, the lower intensity bone struc-
tures are missed by the segmentation mask and are therefore subject 
to smoothing by the model (ZIRCON = synthesiZed Improved Reso-
lution and Concurrent nOise reduction; CNN = convolutional neural 
network)
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generalizability, we expect the ZIRCON models to behave 
similar to other AI-based denoising models. Previous stud-
ies [18, 19] have shown that such models generalize well 
across different noise/dose levels but are susceptible to 
out-of-distribution examples reconstructed with signifi-
cantly different kernels. Additionally, a key technical limi-
tation is the threshold-based segmentation used to create 
the pixel-wise weighting factors Dsharp and Dsmooth . When 
high-quality segmentations are not available, as is often 
the case in temporal bones or sinuses of the head, the task-
based loss function does not significantly differ from the 
standard MSE-trained model. We hypothesize that imple-
menting an auxiliary CNN model to perform semantic seg-
mentation of these complex anatomic regions may result 
in further improvements. As the focus of this work was on 
investigating the use of new loss functions to synthesize 
CT image series and not on identifying the optimal skull 
segmentation technique, investigating alternative and more 
advanced segmentation techniques remains as future work.

Conclusion

Given the exponential rise in the number and complexity of 
CT imaging exams, there is a demonstrated need for technol-
ogy that reduces information overload for the interpreting 
radiologist. In this work, we propose multiple-kernel syn-
thesis as a way of addressing this issue by generating images 
that more efficiently convey the clinically relevant informa-
tion, thereby simplifying the workflow for the radiologist.
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