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Abstract: We demonstrate a fast, flexible, and accurate paraxial wave propagation model to 
serve as a forward model for propagation-based X-ray phase contrast imaging (XPCI) in 
parallel-beam or cone-beam geometry. This model incorporates geometric cone-beam effects 
into the multi-slice beam propagation method. It enables rapid prototyping and is well suited 
to serve as a forward model for propagation-based X-ray phase contrast tomographic 
reconstructions. Furthermore, it is capable of modeling arbitrary objects, including those that 
are strongly or multi-scattering. Simulation studies were conducted to compare our model to 
other forward models in the X-ray regime, such as the Mie and full-wave Rytov solutions. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Propagation-based X-ray phase-contrast imaging (PB-XPCI) is a promising technique that has 
shown exciting results in pre-clinical studies [1–3]. This technique involves illuminating a 
sample with coherent X-rays and allowing the scattered wave to propagate in free space at 
various distances, and then using a forward model for wave propagation (e.g. the transport-of-
intensity equation (TIE) [4–6]) to recover the phase of the object’s exit surface wave. PB-
XPCI has found a wide range of applications across various length scales, particularly for 
computed tomography (CT). Applications include clinical-scale large field-of-view (FOV) 
studies of joint and bone structure [7,8], breast imaging [9], brain imaging [10,11], and 
cardiac applications [12]. PB-XPCI is also used for high resolution nanotomography [13–15]. 
Numerous systems have been studied with phase contrast nanotomography, including 
materials [16,17], and biological systems such as lungs [18], bone ultrastructure [19,20], 
neurological systems [21], and the organism Caenorhabditis elegans [22]. 

Forward models of PB-XPCI are important for system prototyping and design, as well as 
for iterative tomographic reconstruction. Current forward models suffer from limitations on 
the type of objects that can be modeled, and can be computationally expensive. Non-paraxial 
forward models such as the Mie solution [23–25] and full-wave Rytov approach [26–29] 
provide very high accuracy for parallel-beam geometry, but are not able to simultaneously 
incorporate multiple scattering, arbitrarily large objects, and cone-beam effects. 

A simple method for modeling a three-dimensional object is to treat it as a two-
dimensional projection of its complex refractive index along the propagation axis. We refer to 
this as the projected-object approximation (rather than the projection approximation as it is 
sometimes called) to distinguish from when a projection is assumed along the entire ray path, 
which is a routine assumption in many tomographic reconstruction methods. The phase and 
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amplitude changes to a wave caused by an object treated as a projection can be expressed as 
[30], 
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where the change in phase ϕΔ , induced by the object over its thickness T , is simply the 

integral of the real part of the spatially varying refractive index ( , , )x y zδ , scaled by the 

wavelength λ . The quantity 0( , ) / ( , )a x y a x y  is the ratio of the amplitude at the entrance 

plane of the object to the amplitude at the exit plane of the object, and ( , , )x y zβ  is the 

imaginary part of the object’s spatially varying refractive index. The full refractive index is 
expressed then as ( , , ) [1 ( , , )] ( , , )n x y z x y z i x y zδ β= − + . 

While the projected-object approximation described in Eqs. (1) and (2) is useful for many 
imaging systems, it begins to break down once diffraction effects within the sample become 
important. To account for intra-object scattering and diffraction in optical and certain X-ray 
applications, the beam propagation method (BPM) [31,32] has been used [33,34], which 
utilizes a multi-slice approach and does not require that the object for a given imaging system 
be valid under the projected-object approximation [35–37]. BPM has been used in X-ray 
ptychography [36,38] and other applications [39,40], where the parallel-beam assumption is a 
good approximation. However, current implementations of BPM do not account for cone-
beam effects within the sample. Cone-beam effects are important in many applications where 
imaging is performed with a diverging (or converging) beam [14], and is of crucial 
importance for nanotomography [15,41–44]. Cone-beam geometry is also important in 
medical X-ray radiography and CT [45] due to requirements of wide beam coverage and short 
scan times. 

Furthermore, iterative methods are important for both tomographic reconstructions and 
phase retrieval applications [46,47]. An accurate and fast forward model is crucial for 
developing iterative reconstruction suitable for coherent phase-contrast tomography. Thus, 
our motivation here is two-fold: firstly, an iterative algorithm can only be as good as its 
forward model, and as short computation times are essential for high-throughput and clinical 
feasibility, we choose to forgo high-angle accuracy in favor of a paraxial model for the 
flexibility to incorporate arbitrary objects and cone-beam effects. Secondly, an accurate 
forward model can be used for imaging system design and prototyping, for instance in 
determining tradeoffs between phase sensitivity, FOV, and resolution. 

Here, we combine BPM with cone-beam effects by rescaling the diffracted wave at 
multiple planes within the object, rather than treating the object under the projected-object 
approximation and only rescaling once. Hence, we call our method the cone-beam beam 
propagation method, or CB-BPM. We make this distinction from the traditional approach by 
referring to it as parallel-beam BPM, or PB-BPM. 

2. Forward models used for propagation-based X-ray phase-contrast imaging 

The appropriate choice of forward model for a scattering process depends on the scattering 
potential, type of illumination, and competing needs of accuracy and low computational 
expense. This section discusses some of the forward models in present use for PB-XPCI and 
the types of objects for which they are most appropriate. 
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2.2 First-order solutions 

The full-wave Rytov (FWR) approach uses the scalar wave theory for the propagation of X-
rays across the entire object’s volume as well as the free space between the object and 
detector [26,27]. This contrasts with other existing approaches using the projected-object 
approximation for the object and applying a wave approach only for the free-space 
propagation. FWR can incorporate a phantom defined as non-uniform rational B-splines 
(NURBS), which enabled XPCI simulation using the realistic XCAT phantom without 
numerical artifacts due to discretized voxels [28]. FWR can be applied to cone-beam 
geometry, but it is computationally expensive. FWR does not account for multiple scattering, 
which may be important in some applications. 

While not yet widely used in the X-ray regime, much recent work has been done on 
nonlinear first-order methods for reconstruction in optical diffraction tomography, which is a 
related problem to what is treated here, but typically uses visible light. Some of these 
approaches include inversion methods [55–57], which can account for multiple scattering and 
reflections. Recently, applications of machine learning [34,58] have been demonstrated for 
tomographic reconstruction, as have other methods for phase retrieval [59,60]. 

2.3 Beam propagation method 

The multi-slice PB-BPM has been used for a variety of applications in optics. Although it is 
capable of accounting for a wide variety of objects, it does not incorporate geometric cone-
beam effects, which are important for cone-beam CT and other diverging-beam applications 
where geometric magnification is non-negligible. 

BPM does not require that an entire object be valid under the projected-object 
approximation. Rather, each individual slice is approximated as a projection, with 
propagation occurring in between each slice. This allows for multiple scattering events and 
diffraction within the object, so long as the slices are chosen to be sufficiently thin such that 
the refractive index does not vary significantly within an individual slice along the 
propagation direction. For real-space imaging, a convenient choice of slice thickness is to set 
the resolution to be isotropic, or an integer number of the transverse resolution. While an 
interpolation between slices can potentially be performed, the fundamental resolution limit is 
set by the camera’s pixel size and the system magnification. 

In the case of diffraction imaging, where the resolution is typically much higher and the 
FOV typically much smaller, the minimum diffraction-limited resolution is set by the 
illuminating wavelength, detector size, and propagation distance of the system. It therefore 
may be more convenient to set the axial resolution to a larger number. BPM relies heavily on 
the fast Fourier transform (FFT) algorithm, and therefore the computation time generally 
depends on the number of points in the array, as well as the number of slices. Physical 
parameters such as wavelength typically do not change the computation time of this method, 
although they will affect the distance over which the projected-object approximation is valid. 

One drawback of BPM is that in most implementations, the paraxial approximation is 
assumed to hold for the wave. This means that high-angle scattering events and wave 
curvature are not incorporated into the model. In the context of PB-XPCI, many 
implementations of the transport of intensity equation (TIE) already assume paraxial 
scattering [4,61,62]. Then, the application of CB-BPM requires no further approximations. 
The following section discusses the paraxial approximation in further detail. 

3. Cone-beam beam propagation method 

3.1 The paraxial approximation 

While high angle wave information is sacrificed in the BPM approach, numerous steps in the 
PB-XPCI process routinely make the paraxial approximation. Many implementations of the 
TIE rely on the paraxial approximation in order to perform phase retrieval [5], as does the 
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Fresnel scaling theorem, which is used to model cone-beam effects [30]. The paraxial 
approximation can be stated as [63], 

 
| | 1

| | 1
x

y

f

f

λ
λ




 (3) 

where λ  is the wavelength and xf  and yf  are the spatial frequencies in the x  and y  

dimensions respectively. In an image-space (as opposed to Fourier space) near-field imaging 
approach such as PB-XPCI, the spatial frequencies are approximately the same at the sample 
and detector planes, and are typically set by the pixel size and overall dimension of the 
detector, as this determines how the spatial frequencies of the wave are sampled. The highest 
possible product on the left-hand sides of Eq. (3) will be given by the largest possible spatial 
frequency the imaging system can sample, which is determined by the inverse of the detector 
pixel size. Photon energies as low as 1 keV still have wavelengths of the order 1-2 nm, so 
even an imaging system with very small detector pixel size (of the order 1 μm) will produce a 
product several orders of magnitude below unity. Thus, an image-space near-field imaging 
system satisfies the paraxial approximation, Eq. (3). 

Other imaging techniques utilizing X-rays, such as coherent diffractive imaging (CDI) use 
a very tightly focused beam to allow data to be collected in Fourier space [64]. CDI is capable 
of sampling very high spatial frequencies compared to the wavenumber1/ λ , and therefore 
may not be valid under the paraxial approximation. 

3.2 Fresnel scaling theorem and PB-BPM 

The Fresnel scaling theorem is a convenient way to incorporate magnification into a 
computational wave simulation. It maps the intensity CBI  obtained by cone- beam 

propagation in terms of the intensity that would be obtained by parallel- beam propagation, 

PBI ,with a different propagation distance and pixel size [30], 
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In this geometry, the magnification is defined as 1 2 1( ) /M z z z= +  and 2 /effz z M= , where 

1z  is the source-object distance, 2z  is the object-detector distance, and effz is the effective 

propagation distance. The factor 21 / M  conserves energy. 
Traditional PB-BPM works as an iterative process in the following way, 
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where ( , )kU x y  is the wave at the thk  plane, ( , )kT x y  is the transmission function at the thk  

plane, and the operator zΔP is the propagator (for instance, angular spectrum of plane waves 

propagation) over the slice thickness zΔ  [63]. The angular spectrum propagator, which is used 
here, can be expressed in operator notation as [30] 

 ( )1 2 2 2expz x yi z k f f−
Δ = Δ − − P  (6) 
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where 1/k λ=  with λ  being the wavelength, xf  and yf  are the spatial frequencies in x and 

y respectively,   is the Fourier transform operator, and 1−  is the inverse Fourier transform 
operator. 

An advantage of BPM is that it treats waves at any given plane as two dimensional, 
greatly simplifying the computation. In the limit where the amount of diffraction over the 
entire sample thickness is negligible, Eq. (5) reduces to simply multiplying all of the 
transmission functions together, and the result is equivalent to the projected-object 
approximation in Eqs. (1) and (2). 

CB-BPM is implemented by applying the Fresnel scaling theorem (Eq. (4)) to the beam 
propagation method (Eq. (5)) at each slice. The method is described as follows. 

3.3 Steps for applying CB-BPM 

A primary advance of CB-BPM—one which allows it to account for multiple scattering and 
arbitrarily thick objects —is the application of the Fresnel scaling theorem within the object, 
rather than only at the exit surface wave. This is accomplished by adding an interpolation and 
distance re-scaling step at every plane in the object. 

The procedure for going from plane k  to plane 1k +  is as follows. First, the effective 
slice thickness Δz  is calculated at the 1k +  plane based on the change in magnification 

between adjacent slices (at the very first slice, the previous magnification kM  is simply 1), 

 1
1

.k
k

k

M
z

M+
+

Δ = Δz  (7) 

Then, the propagated wave at the 1k +  plane is found by applying the propagation 

operator to the wave at the thk  plane ( ),kU x y , 
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k kU x y U x y
++ Δ= zP P  (8) 

where the subscript , 1k +P  denotes that the wave has been propagated to the 1k +  plane. 
So far, x  and y  have been treated as general transverse coordinates. At this point, it 

becomes important to consider the scaling of the coordinates at each plane. The coordinates 
x  and y  will now be considered to be the specific coordinates at the detector plane. 

The exit wave at the 1k +  plane is found by interpolating the wave it onto the appropriate 
grid based on the change in magnification. Here, the interpolation operation to transform the 
coordinates from plane k  to plane 1k +  for a wave that has already been propagated to the 

1k +  plane is defined as 

 1 , 1 , 1
1 1

, ,k k k k
k k k k k k

x y x y y y
I U U

M M M M M M→ + + +
+ +

    
≡ → →    

     
P P  (9) 

which takes the scaling from that of plane k to that of plane 1k + . While the wave has been 
propagated to plane 1k + , it needs to be scaled to plane 1k +  as well. It is assumed that steps 
are taken to ensure that energy is conserved properly during the interpolation process. The 
final step is to multiply by the object’s (appropriately interpolated) transmission function at 
the 1k +  plane. Putting it all together, the procedure can be described as follows: first, obtain 
the wave at the first plane by multiplying the first wave’s transmission function 1( , )T x y  by 

the initial input wave 0 ( , )U x y , and interpolating this product to have the correct 

magnification, 
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Next, this wave is propagated to the second plane, 
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Then, using the quantity calculated in Eq. (11), the wave is interpolated and multiplied by the 
appropriately scaled transmission function at the second plane to get the final wave at the 
second plane, 
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The subscript on wave 
,2

U
P

 denotes that the wave has been propagated to plane 2, but not 

yet scaled. Once the wave has been interpolated and multiplied by the transmission function, 
the operations at plane 2 are complete, and the wave 2U  has a subscript of simply 2. 

The process is then repeated to go from the second to third plane and so on until the end 
of the object is reached. The general formula can then be expressed as, 
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Section 5 shows examples of simulations this method compared to other forward models. 

4. Computational simulation methods 

This section describes simulations carried out to test and validate CB-BPM, as well as 
illustrative simulations that show the important of multiple scattering, and the ability of CB-
BPM to handle arbitrary objects. All simulations were performed in MATLAB. 

Current non-projected object forward models do not incorporate cone-beam effects 
without exorbitant computational expense, and current implementations of the Mie solution 
for multiple scattering use parallel beam geometry. Therefore, it was necessary to perform 
accuracy comparisons using the parallel-beam version of CB-BPM, which reduces to the 
traditional PB-BPM for X-ray wavelengths. 

The Mie scattering implementations used are those described by Schäfer et al. [53] 
because software is available in MATLAB, and the solutions were developed to be accurate 
in the near-field. 

When possible, the physical parameters used in these simulations were matched to our 
experimental system under development [29,65]. However, the physical parameters had to be 
changed in certain cases in order to keep computation times with the Mie solution reasonable. 
The computation time for a Mie solution increases with the ratio of the object diameter to the 
wavelength. For the wavelength and length scales of interest for our imaging system design 
[29], this ratio is quite large ( 710≈  or more), and it was therefore untenable to do calculations 
matching these parameters with the Mie solution. Therefore, the photon energy, object size, 
grid size, pixel size, and propagation distances had to be reduced in some cases. However, the 
refractive index was kept constant and assumed to be that of water at 30 keV [66] in order to 
keep the simulation as close as possible to the design parameters in the system under 
development [29]. All input waves were treated as monochromatic plane waves. 

A guiding consideration in carrying out the parameter rescaling was the Fresnel number. 
The Fresnel number is defined as, 
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such that a  is the aperture size or characteristic length scale of the object, λ  is the 
wavelength, and z  is the propagation distance [63]. The near-field is where 1NF > , and the 

far-field is where 1NF   [63]. Many implementations of PB-XPCI that have large fields of 

view are performed in the near-field. In the near-field, there is little to moderate diffraction, 
while in the far-field, the diffraction is significant. However, it is important that the Fresnel 
number be small enough so that some diffraction effects can be observed. To maintain a 
Fresnel number that ensured the measured field would still be in the near-field ( 1NF > ), the 

other simulation parameters, such as the pixel size and propagation distance, were scaled 
down as well. Furthermore, the Schäfer implementation for cylinders [53] only calculates the 
scattered field at a set distance based on the number of pixels used in the simulation and the 
physical size of the pixels. 

Table 1. Parameters used in simulations 

Object type 
Photon 
energy 
(keV) 

Pixel 
size 
(μm) 

Grid size 
Propagation 

distance 

Refractive index 
material and 

photon energy 

Object 
size 

Fresnel 
number 

Homogeneous 
sphere 

3 16 64x64 0.5-2 m Water at 30 keV 0.5 mm 
302 - 

1.2x103 
Single 

cylinder 
3 8 64x64 0.256 mm Water at 30 keV 

0.05-0.3 
mm 

2.4x104 - 
8.5x105 

Three aligned 
cylinders 

0.3 0.25 128x128 16 μm Water at 30 keV 2 μm 60 

Three offset 
cylinders 

0.3 0.125 128x128 8 μm Water at 30 keV 2 μm 121 

Two aligned 
spheres 

30 3.45 256x256 1.5 m 
Water, Ca at 30 

keV 
0.5 mm 4.0x103 

XCAT 
phantom 

30 78.5 1000x1000 0.1-4.5 m 
Various tissues at 

30 keV 
1.25 mm 

8.4x103 - 
3.8x105 

While the Fresnel number is straight forward to compute for a case of a sphere or 
aperture, choosing a characteristic length scale is less simple for a large heterogeneous object. 
Therefore, in the case of the XCAT phantom the characteristic object size was considered to 
be about 16 pixels, although the phantom itself takes up nearly the entire FOV. When 
multiple object sizes or propagation distances were used, the Fresnel number is listed in Table 
1 as a range. 

The reported relative differences between the Mie (or FWR) solution and the BPM are the 
mean differences in intensity along a lineout, namely, the mean of 2 1 1( ) /I I I− at each pixel 

along the lineout, where 1I  is chosen to be the Mie solution, or the FWR solution if the 

comparison is between BPM and FWR. This calculation was performed after the resulting 
intensities were normalized, and in the case of rotationally symmetric objects, after the 
intensity pattern was radially averaged to smooth aliasing artifacts that result from using a 
discrete propagation grid. 

4.1 Single homogeneous sphere 

First, a simulation was performed on a single homogeneous sphere and PB-BPM was 
compared to the Mie solution and the full-wave Rytov (FWR) solution. While this system 
falls within the single and weak scattering approximation, it is nonetheless important to verify 
PB-BPM on a simple system to compare computation times and verify that the paraxial 
approximation is appropriate. 
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The photon energy was reduced to 3 keV due to computation limitations of the Mie 
solution. The refractive index was set to be that of water at 30 keV. Other simulation 
parameters are listed in Table 1. 

In order to fairly compare BPM to the FWR solution, it is important to use precisely the 
same scattering potential. Therefore, in this implementation, the scattering potential input to 
PB-BPM was set to be as close as possible to that of the FWR solution; a Hann-filtered 
sphere, in order to ensure that the two used the same object. This was achieved by running the 
FWR simulation with a propagation distance of 10−16 m, and using the complex exit wave as 
the input to BPM. This necessitated using the projected-object approximation, but in this 
particular case of a single weakly-scattering object, the projected-object approximation is 
valid. 

A Hann-filtered sphere was used for the scattering potential here in order to suppress 
ringing artifacts caused by discretized voxels. This provides a fairer comparison to the Mie 
solution. Because the Mie solution uses an analytic expression, it does not suffer from the 
same discontinuity artifacts, such as spatial frequency aliasing or ringing at the boundary of 
the sphere, as the FWR and BPM approaches do. 

The BPM intensities were radially averaged for clear presentation and to mitigate aliasing 
and discretization artifacts. In principle, the intensity pattern should be perfectly rotationally 
symmetric, since the objects and illumination are rotationally symmetric. However, because 
of propagation artifacts caused by utilizing a discrete propagation grid, the patterns exhibit 
minor distortions. Radially averaging produces a better representation of the overall pattern. 

4.2 Single cylinder 

Here, and for the multiple cylinders described in the following section (Sec. 4.3), the Schäfer 
implementation [53] was used to calculate the Mie solution for an infinite cylinder or 
cylinders [67,68]. These simulations are computationally intensive, particularly for high 
photon energies, so the photon energy had to be reduced. To maintain a Fresnel number that 
kept the solution in the near-field, the pixel and cylinder size had to be scaled as well. 
Furthermore, the geometry of the Schäfer implementation is such that the propagation 
distance is controlled by the pixel size and number of points, so the comparisons were 
performed for short distances. 

For objects that are represented by discrete binary functions, each interface contains high 
frequency content that in turn causes ringing, making it difficult to directly compare to 
methods that use smooth or filtered functions to represent objects. To mitigate this artifact, 
the object was filtered at every axial slice with a Gaussian function (width = 4), and any 
smoothing effects beyond the physical boundary of the cylinder were masked out. Because 
the cylinder is infinite, the intensity pattern only varies in one dimension, and therefore the 
lineouts shown contain all the information about the intensity pattern. 

4.3 Multiple cylinders 

Next, multiple infinite cylinders separated by various distances were tested. This allows for a 
solution involving multiple scattering events to be calculated. 

The validity of PB-BPM was tested against this case for two different cylinder geometries. 
One involves all cylinders being aligned with the only offset being along the beam 
propagation direction, such that the farther ones are ‘shadowed’ by the near ones. In parallel-
beam geometry under the projected-object approximation, such a configuration would look 
like a single cylinder (with a different refractive index). The second case investigated was 
with the cylinders displaced along the beam propagation direction and perpendicular to beam 
propagation direction. The computational expense for this simulation is very high, so the 
photon energy had to be decreased to 0.3 keV. The refractive index was maintained at that of 
water for 30 keV, as discussed previously. 
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6. Discussion 

Many imaging applications such as conventional medical X-ray CT use multiple projections 
to tomographically reconstruct a 3D image [73]. However, for phase imaging where 
diffraction and cone-beam effects become important, simply performing filtered 
backprojection (FBP) may not be sufficient [74]. Indeed, a forward and/or backward model 
that accounts for diffraction is essential for coherent phase imaging. Multi-slice parallel beam 
reconstruction has been demonstrated in the optical regime [37], and here the forward model 
has been explored in silico for X-rays, along with novel cone-beam multi-slice propagation. 

Other propagation methods, such as the wave propagation method (WPM), are accurate 
for non-paraxial waves but require increased computational complexity [33,37]. PB-BPM and 
CB-BPM utilize fast Fourier transforms, making them a good choice for iterative 
reconstruction, where the forward model has to be computed many times. Efficient proof-of-
principle computational prototyping is also essential for imaging system design. 

CB-BPM loses accuracy for high-angle, non-paraxial scattering, and can quickly become 
computationally intensive for large numbers of slices within the object. It is therefore less 
appropriate for longer-wavelength imaging of large, strongly scattering objects. Furthermore, 
it has been demonstrated here well within the Fresnel regime, and is not intended to propagate 
over distances that would be described by small Fresnel numbers that fall within the 
Fraunhofer regime. It is also important to note that CB-BPM does not take reflections or 
incoherent scattering events into account. 

7. Conclusion 

In this work, the use of PB-BPM has been validated for X-ray wavelengths, and a cone-beam 
multi-slice beam propagation method, called CB-BPM, has been described and demonstrated. 
This technique can model arbitrary sized objects and account for diffraction and 
magnification within that object. This allows for increased flexibility in a forward model that 
is capable of treating a variety of objects, only requiring that the paraxial approximation is 
valid and that the slices are sufficiently thin. Furthermore, the approximations made by this 
forward model are already within the scope of assumptions made for PB-XPCI when phase 
retrieval is achieved with the transport-of-intensity equation. 

The computation time of CB-BPM depends only on the size of the grids, for instance the 
number of pixels and how many slices the object is divided into. Future work of interest will 
be validating this model experimentally and incorporating it into a reconstruction framework, 
and combining it with machine learning approaches. Interesting extensions also include 
implementations with asymmetric grid or pixel sizes or in regimes with partial spatial 
coherence. 
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