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Abstract: We demonstrate a fast, flexible, and accurate paraxial wave propagation model to
serve as a forward model for propagation-based X-ray phase contrast imaging (XPCI) in
parallel-beam or cone-beam geometry. This model incorporates geometric cone-beam effects
into the multi-slice beam propagation method. It enables rapid prototyping and is well suited
to serve as a forward model for propagation-based X-ray phase contrast tomographic
reconstructions. Furthermore, it is capable of modeling arbitrary objects, including those that
are strongly or multi-scattering. Simulation studies were conducted to compare our model to
other forward models in the X-ray regime, such as the Mie and full-wave Rytov solutions.
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1. Introduction

Propagation-based X-ray phase-contrast imaging (PB-XPCI) is a promising technique that has
shown exciting results in pre-clinical studies [1-3]. This technique involves illuminating a
sample with coherent X-rays and allowing the scattered wave to propagate in free space at
various distances, and then using a forward model for wave propagation (e.g. the transport-of-
intensity equation (TIE) [4-6]) to recover the phase of the object’s exit surface wave. PB-
XPCI has found a wide range of applications across various length scales, particularly for
computed tomography (CT). Applications include clinical-scale large field-of-view (FOV)
studies of joint and bone structure [7,8], breast imaging [9], brain imaging [10,11], and
cardiac applications [12]. PB-XPCI is also used for high resolution nanotomography [13—15].
Numerous systems have been studied with phase contrast nanotomography, including
materials [16,17], and biological systems such as lungs [18], bone ultrastructure [19,20],
neurological systems [21], and the organism Caenorhabditis elegans [22].

Forward models of PB-XPCI are important for system prototyping and design, as well as
for iterative tomographic reconstruction. Current forward models suffer from limitations on
the type of objects that can be modeled, and can be computationally expensive. Non-paraxial
forward models such as the Mie solution [23-25] and full-wave Rytov approach [26-29]
provide very high accuracy for parallel-beam geometry, but are not able to simultaneously
incorporate multiple scattering, arbitrarily large objects, and cone-beam effects.

A simple method for modeling a three-dimensional object is to treat it as a two-
dimensional projection of its complex refractive index along the propagation axis. We refer to
this as the projected-object approximation (rather than the projection approximation as it is
sometimes called) to distinguish from when a projection is assumed along the entire ray path,
which is a routine assumption in many tomographic reconstruction methods. The phase and
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amplitude changes to a wave caused by an object treated as a projection can be expressed as
(301,

T

Ap(x,y) =—27”j5(x,y,z)dz (1)
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where the change in phase A¢, induced by the object over its thickness 7, is simply the
integral of the real part of the spatially varying refractive index d(x,y,z), scaled by the
wavelength A. The quantity a(x,y)/a,(x,y) is the ratio of the amplitude at the entrance
plane of the object to the amplitude at the exit plane of the object, and fA(x,y,z) is the

imaginary part of the object’s spatially varying refractive index. The full refractive index is
expressed then as n(x, y,z) =[1-90(x, y,2)]|+iB(x, y,z) .

While the projected-object approximation described in Egs. (1) and (2) is useful for many
imaging systems, it begins to break down once diffraction effects within the sample become
important. To account for intra-object scattering and diffraction in optical and certain X-ray
applications, the beam propagation method (BPM) [31,32] has been used [33,34], which
utilizes a multi-slice approach and does not require that the object for a given imaging system
be valid under the projected-object approximation [35-37]. BPM has been used in X-ray
ptychography [36,38] and other applications [39,40], where the parallel-beam assumption is a
good approximation. However, current implementations of BPM do not account for cone-
beam effects within the sample. Cone-beam effects are important in many applications where
imaging is performed with a diverging (or converging) beam [14], and is of crucial
importance for nanotomography [15,41-44]. Cone-beam geometry is also important in
medical X-ray radiography and CT [45] due to requirements of wide beam coverage and short
scan times.

Furthermore, iterative methods are important for both tomographic reconstructions and
phase retrieval applications [46,47]. An accurate and fast forward model is crucial for
developing iterative reconstruction suitable for coherent phase-contrast tomography. Thus,
our motivation here is two-fold: firstly, an iterative algorithm can only be as good as its
forward model, and as short computation times are essential for high-throughput and clinical
feasibility, we choose to forgo high-angle accuracy in favor of a paraxial model for the
flexibility to incorporate arbitrary objects and cone-beam effects. Secondly, an accurate
forward model can be used for imaging system design and prototyping, for instance in
determining tradeoffs between phase sensitivity, FOV, and resolution.

Here, we combine BPM with cone-beam effects by rescaling the diffracted wave at
multiple planes within the object, rather than treating the object under the projected-object
approximation and only rescaling once. Hence, we call our method the cone-beam beam
propagation method, or CB-BPM. We make this distinction from the traditional approach by
referring to it as parallel-beam BPM, or PB-BPM.

2. Forward models used for propagation-based X-ray phase-contrast imaging

The appropriate choice of forward model for a scattering process depends on the scattering
potential, type of illumination, and competing needs of accuracy and low computational
expense. This section discusses some of the forward models in present use for PB-XPCI and
the types of objects for which they are most appropriate.
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Fig. 1. Scattering geometries in propagation-based X-ray phase contrast imaging. (a) Parallel-
beam single-scattering geometry, often used in the Mie solution. (b) Parallel-beam beam
propagation method (PB-BPM), which does not account for cone beam effects but does allow
multiple scattering. (¢) Cone-beam model that only allows a single scattering event, as the
object is treated under the projected-object approximation. (d) The model proposed here, CB-
BPM, uses cone-beam geometry and allows for a thick, multi-scattering object to be
considered.

Many current implementations of PB-XPCI rely on the assumption that the object can be
treated under the projected-object approximation (Egs. (1) and (2)). This assumption is valid
for thin and weakly scattering objects, and for other modalities such as incoherent X-ray
absorption imaging used in clinical CT. However, for coherent phase imaging, and
particularly for imaging thick objects, diffraction within the object can be significant. Figure
1 demonstrates object and beam geometries used in current PB-XPCI forward models.

2.1 Mie solution

The Mie solution (sometimes referred to as the Lorenz-Mie solution) is an exact solution of
Maxwell’s equations in the form of an infinite series, making it an ideal candidate against
which to test other models. While it was originally demonstrated for a plane wave scattering
from a single homogeneous sphere [23], solutions have recently been demonstrated for a wide
range of particle numbers, sizes, shapes, and illumination types. One approach, known as
generalized Lorenz-Mie theory, allows exact solutions for scattering by non-plane wave
illumination such as Gaussian beams [25,48,49]. Another approach, T-Matrix formulation
[24,50,51], can account for multiple scattering caused by aggregates of particles. While these
approaches are very powerful and highly general, their convergence is not well-established
for near-field solutions of multiple scattering [52].

For certain types of scattering assemblies, the scattered field can be found by solving by
the wave equation with appropriate boundary conditions, which is particularly important for
convergence and accuracy of near-field solutions [53,54]. However, this type of solution is
only computationally feasible for very limited types of systems. In addition to single spheres,
solutions can be found for one or more infinite cylinders [53].

While the Mie solution’s accuracy makes it an excellent gold standard against which to
compare other methods, its long computation time is problematic. The computation time
scales as a ratio of the object’s diameter to the wavelength [26], which is a problem
particularly for X-ray imaging of human-sized objects, where this ratio can exceed 10" . It is
also impractical to model large, complex biological structures as particle aggregates.
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2.2 First-order solutions

The full-wave Rytov (FWR) approach uses the scalar wave theory for the propagation of X-
rays across the entire object’s volume as well as the free space between the object and
detector [26,27]. This contrasts with other existing approaches using the projected-object
approximation for the object and applying a wave approach only for the free-space
propagation. FWR can incorporate a phantom defined as non-uniform rational B-splines
(NURBS), which enabled XPCI simulation using the realistic XCAT phantom without
numerical artifacts due to discretized voxels [28]. FWR can be applied to cone-beam
geometry, but it is computationally expensive. FWR does not account for multiple scattering,
which may be important in some applications.

While not yet widely used in the X-ray regime, much recent work has been done on
nonlinear first-order methods for reconstruction in optical diffraction tomography, which is a
related problem to what is treated here, but typically uses visible light. Some of these
approaches include inversion methods [55-57], which can account for multiple scattering and
reflections. Recently, applications of machine learning [34,58] have been demonstrated for
tomographic reconstruction, as have other methods for phase retrieval [59,60].

2.3 Beam propagation method

The multi-slice PB-BPM has been used for a variety of applications in optics. Although it is
capable of accounting for a wide variety of objects, it does not incorporate geometric cone-
beam effects, which are important for cone-beam CT and other diverging-beam applications
where geometric magnification is non-negligible.

BPM does not require that an entire object be valid under the projected-object
approximation. Rather, each individual slice is approximated as a projection, with
propagation occurring in between each slice. This allows for multiple scattering events and
diffraction within the object, so long as the slices are chosen to be sufficiently thin such that
the refractive index does not vary significantly within an individual slice along the
propagation direction. For real-space imaging, a convenient choice of slice thickness is to set
the resolution to be isotropic, or an integer number of the transverse resolution. While an
interpolation between slices can potentially be performed, the fundamental resolution limit is
set by the camera’s pixel size and the system magnification.

In the case of diffraction imaging, where the resolution is typically much higher and the
FOV typically much smaller, the minimum diffraction-limited resolution is set by the
illuminating wavelength, detector size, and propagation distance of the system. It therefore
may be more convenient to set the axial resolution to a larger number. BPM relies heavily on
the fast Fourier transform (FFT) algorithm, and therefore the computation time generally
depends on the number of points in the array, as well as the number of slices. Physical
parameters such as wavelength typically do not change the computation time of this method,
although they will affect the distance over which the projected-object approximation is valid.

One drawback of BPM is that in most implementations, the paraxial approximation is
assumed to hold for the wave. This means that high-angle scattering events and wave
curvature are not incorporated into the model. In the context of PB-XPCI, many
implementations of the transport of intensity equation (TIE) already assume paraxial
scattering [4,61,62]. Then, the application of CB-BPM requires no further approximations.
The following section discusses the paraxial approximation in further detail.

3. Cone-beam beam propagation method
3.1 The paraxial approximation

While high angle wave information is sacrificed in the BPM approach, numerous steps in the
PB-XPCI process routinely make the paraxial approximation. Many implementations of the
TIE rely on the paraxial approximation in order to perform phase retrieval [5], as does the
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Fresnel scaling theorem, which is used to model cone-beam effects [30]. The paraxial
approximation can be stated as [63],

|Af, <1

[Af, <1 )

where 4 is the wavelength and f, and f, are the spatial frequencies in the x and y

dimensions respectively. In an image-space (as opposed to Fourier space) near-field imaging
approach such as PB-XPCI, the spatial frequencies are approximately the same at the sample
and detector planes, and are typically set by the pixel size and overall dimension of the
detector, as this determines how the spatial frequencies of the wave are sampled. The highest
possible product on the left-hand sides of Eq. (3) will be given by the largest possible spatial
frequency the imaging system can sample, which is determined by the inverse of the detector
pixel size. Photon energies as low as 1 keV still have wavelengths of the order 1-2 nm, so
even an imaging system with very small detector pixel size (of the order 1 pm) will produce a
product several orders of magnitude below unity. Thus, an image-space near-field imaging
system satisfies the paraxial approximation, Eq. (3).

Other imaging techniques utilizing X-rays, such as coherent diffractive imaging (CDI) use
a very tightly focused beam to allow data to be collected in Fourier space [64]. CDI is capable
of sampling very high spatial frequencies compared to the wavenumber1/ A, and therefore
may not be valid under the paraxial approximation.

3.2 Fresnel scaling theorem and PB-BPM
The Fresnel scaling theorem is a convenient way to incorporate magnification into a

computational wave simulation. It maps the intensity /., obtained by cone- beam

propagation in terms of the intensity that would be obtained by parallel- beam propagation,
1,, ,with a different propagation distance and pixel size [30],

X ).

MZ PB (M M ef/ ) (4)

CB(x y,Z )

In this geometry, the magnification is defined as M =(z,+z,)/z and z,; =z,/M , where
z, is the source-object distance, z, is the object-detector distance, and z, is the effective

propagation distance. The factor 1/ M conserves energy.
Traditional PB-BPM works as an iterative process in the following way,

Ui(x,y)=Uy(x, )T (x,»)
U,(x,y) = Z AU, (x, y)}T,(x, y)
UB(xsy)=’€z{U2(x’y)}T3(xsy) (5)

Uk+1 (xay) = /?Az {Uk (an’)}Zm (x’y)}

where U, (x,y) is the wave at the k" plane, T, (x,y) is the transmission function at the k"
plane, and the operator Z_is the propagator (for instance, angular spectrum of plane waves

propagation) over the slice thickness Az [63]. The angular spectrum propagator, which is used
here, can be expressed in operator notation as [30]

= J”-"lexp(iAka2 - 11 )]'_ (6)
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where k=1/4 with A being the wavelength, f, and f, are the spatial frequencies in x and

y respectively, F is the Fourier transform operator, and F ™' is the inverse Fourier transform
operator.

An advantage of BPM is that it treats waves at any given plane as two dimensional,
greatly simplifying the computation. In the limit where the amount of diffraction over the
entire sample thickness is negligible, Eq. (5) reduces to simply multiplying all of the
transmission functions together, and the result is equivalent to the projected-object
approximation in Egs. (1) and (2).

CB-BPM is implemented by applying the Fresnel scaling theorem (Eq. (4)) to the beam
propagation method (Eq. (5)) at each slice. The method is described as follows.

3.3 Steps for applying CB-BPM

A primary advance of CB-BPM—one which allows it to account for multiple scattering and
arbitrarily thick objects —is the application of the Fresnel scaling theorem within the object,
rather than only at the exit surface wave. This is accomplished by adding an interpolation and
distance re-scaling step at every plane in the object.

The procedure for going from plane & to plane k+1 is as follows. First, the effective
slice thickness Az is calculated at the k+1 plane based on the change in magnification
between adjacent slices (at the very first slice, the previous magnification M, is simply 1),

M
A3, =Az—+. @)
k+1

Then, the propagated wave at the k+1 plane is found by applying the propagation

operator to the wave at the k" planeU, (x,y),

U?,kﬂ (x, y) = ?XJM [Uk (x, y)] (8)

where the subscript 72,k +1 denotes that the wave has been propagated to the k£ +1 plane.

So far, x and y have been treated as general transverse coordinates. At this point, it
becomes important to consider the scaling of the coordinates at each plane. The coordinates
x and y will now be considered to be the specific coordinates at the detector plane.

The exit wave at the k+1 plane is found by interpolating the wave it onto the appropriate
grid based on the change in magnification. Here, the interpolation operation to transform the
coordinates from plane & to plane k+1 for a wave that has already been propagated to the
k +1 plane is defined as

x oy x y Y
| Us | =7 | [S U | T - = s = ’
k—k+1 |: 2+ (Mk M, j:| 7kt (Mk M, M, M, J )

which takes the scaling from that of plane k& to that of plane k£ +1. While the wave has been

propagated to plane k+1, it needs to be scaled to plane k+1 as well. It is assumed that steps
are taken to ensure that energy is conserved properly during the interpolation process. The
final step is to multiply by the object’s (appropriately interpolated) transmission function at
the k+1 plane. Putting it all together, the procedure can be described as follows: first, obtain
the wave at the first plane by multiplying the first wave’s transmission function 7;(x,y) by

the initial input waveU,(x,y), and interpolating this product to have the correct
magnification,
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U, [_’_J:[HM, [Uo(x,y)Tl(x,y)]. (10)

1 1

Next, this wave is propagated to the second plane,

Xy Xy
Uu,,|— = |=72 |U|—,= 11
z,z[Ml MIJ A32|: 1[M1 M1 J:| (11)

Then, using the quantity calculated in Eq. (11), the wave is interpolated and multiplied by the
appropriately scaled transmission function at the second plane to get the final wave at the

second plane,
Xy X oy x oy
U)| —,— =1y | Usr,(—,—) || —,— |. 12
T e e S

The subscript on wave U denotes that the wave has been propagated to plane 2, but not

yet scaled. Once the wave has been interpolated and multiplied by the transmission function,
the operations at plane 2 are complete, and the wave U, has a subscript of simply 2.

The process is then repeated to go from the second to third plane and so on until the end
of the object is reached. The general formula can then be expressed as,

x ¥ x oy X y
Uia (_s_j = IMkaMk . |:U” [_’_j:ITk-H [_’ J (13)
M, M, : M M, M, M,

Section 5 shows examples of simulations this method compared to other forward models.

4. Computational simulation methods

This section describes simulations carried out to test and validate CB-BPM, as well as
illustrative simulations that show the important of multiple scattering, and the ability of CB-
BPM to handle arbitrary objects. All simulations were performed in MATLAB.

Current non-projected object forward models do not incorporate cone-beam effects
without exorbitant computational expense, and current implementations of the Mie solution
for multiple scattering use parallel beam geometry. Therefore, it was necessary to perform
accuracy comparisons using the parallel-beam version of CB-BPM, which reduces to the
traditional PB-BPM for X-ray wavelengths.

The Mie scattering implementations used are those described by Schéfer et al. [53]
because software is available in MATLAB, and the solutions were developed to be accurate
in the near-field.

When possible, the physical parameters used in these simulations were matched to our
experimental system under development [29,65]. However, the physical parameters had to be
changed in certain cases in order to keep computation times with the Mie solution reasonable.
The computation time for a Mie solution increases with the ratio of the object diameter to the
wavelength. For the wavelength and length scales of interest for our imaging system design

[29], this ratio is quite large (=10 or more), and it was therefore untenable to do calculations
matching these parameters with the Mie solution. Therefore, the photon energy, object size,
grid size, pixel size, and propagation distances had to be reduced in some cases. However, the
refractive index was kept constant and assumed to be that of water at 30 keV [66] in order to
keep the simulation as close as possible to the design parameters in the system under
development [29]. All input waves were treated as monochromatic plane waves.

A guiding consideration in carrying out the parameter rescaling was the Fresnel number.
The Fresnel number is defined as,
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Tz

F, (14)
such that a is the aperture size or characteristic length scale of the object, A is the
wavelength, and z is the propagation distance [63]. The near-field is where F,, >1, and the
far-field is where F, «<1 [63]. Many implementations of PB-XPCI that have large fields of
view are performed in the near-field. In the near-field, there is little to moderate diffraction,
while in the far-field, the diffraction is significant. However, it is important that the Fresnel
number be small enough so that some diffraction effects can be observed. To maintain a
Fresnel number that ensured the measured field would still be in the near-field (F, >1), the
other simulation parameters, such as the pixel size and propagation distance, were scaled
down as well. Furthermore, the Schéfer implementation for cylinders [53] only calculates the
scattered field at a set distance based on the number of pixels used in the simulation and the
physical size of the pixels.

Table 1. Parameters used in simulations

Photon  Pixel . Refractive index .
. . S Propagation . Object Fresnel
Object type energy size Grid size h material and ;
distance size number
(keV)  (um) photon energy
Homogeneous 16 64x64 052m  Waterat30keV 0.5 mm 302
sphere 1.2x10
- T
Single 3 8 64x64  0256mm  Waterat30key 00303 24x100
cylinder mm 8.5x10
Three aligned 5= 55 58128 16 um Water at 30 keV 2um 60
cylinders
Three offset 03 0125  128x128 8 um Water at 30 keV 2 pum 121
cylinders
Twoaligned 55 3,45 5560056 15m Water, Caat30 5 40x10°
spheres keV
XCAT Various tissues at 8.4x10° -
phantom 30 78.5  1000x1000  0.1-4.5m 30 keV 1.25 mm 3 8x10°

While the Fresnel number is straight forward to compute for a case of a sphere or
aperture, choosing a characteristic length scale is less simple for a large heterogeneous object.
Therefore, in the case of the XCAT phantom the characteristic object size was considered to
be about 16 pixels, although the phantom itself takes up nearly the entire FOV. When
multiple object sizes or propagation distances were used, the Fresnel number is listed in Table
1 as a range.

The reported relative differences between the Mie (or FWR) solution and the BPM are the
mean differences in intensity along a lineout, namely, the mean of (/, —1,)/ 1, at each pixel

along the lineout, where /; is chosen to be the Mie solution, or the FWR solution if the

comparison is between BPM and FWR. This calculation was performed after the resulting
intensities were normalized, and in the case of rotationally symmetric objects, after the
intensity pattern was radially averaged to smooth aliasing artifacts that result from using a
discrete propagation grid.

4.1 Single homogeneous sphere

First, a simulation was performed on a single homogencous sphere and PB-BPM was
compared to the Mie solution and the full-wave Rytov (FWR) solution. While this system
falls within the single and weak scattering approximation, it is nonetheless important to verify
PB-BPM on a simple system to compare computation times and verify that the paraxial
approximation is appropriate.
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The photon energy was reduced to 3 keV due to computation limitations of the Mie
solution. The refractive index was set to be that of water at 30 keV. Other simulation
parameters are listed in Table 1.

In order to fairly compare BPM to the FWR solution, it is important to use precisely the
same scattering potential. Therefore, in this implementation, the scattering potential input to
PB-BPM was set to be as close as possible to that of the FWR solution; a Hann-filtered
sphere, in order to ensure that the two used the same object. This was achieved by running the
FWR simulation with a propagation distance of 10™'° m, and using the complex exit wave as
the input to BPM. This necessitated using the projected-object approximation, but in this
particular case of a single weakly-scattering object, the projected-object approximation is
valid.

A Hann-filtered sphere was used for the scattering potential here in order to suppress
ringing artifacts caused by discretized voxels. This provides a fairer comparison to the Mie
solution. Because the Mie solution uses an analytic expression, it does not suffer from the
same discontinuity artifacts, such as spatial frequency aliasing or ringing at the boundary of
the sphere, as the FWR and BPM approaches do.

The BPM intensities were radially averaged for clear presentation and to mitigate aliasing
and discretization artifacts. In principle, the intensity pattern should be perfectly rotationally
symmetric, since the objects and illumination are rotationally symmetric. However, because
of propagation artifacts caused by utilizing a discrete propagation grid, the patterns exhibit
minor distortions. Radially averaging produces a better representation of the overall pattern.

4.2 Single cylinder

Here, and for the multiple cylinders described in the following section (Sec. 4.3), the Schifer
implementation [53] was used to calculate the Mie solution for an infinite cylinder or
cylinders [67,68]. These simulations are computationally intensive, particularly for high
photon energies, so the photon energy had to be reduced. To maintain a Fresnel number that
kept the solution in the near-field, the pixel and cylinder size had to be scaled as well.
Furthermore, the geometry of the Schéfer implementation is such that the propagation
distance is controlled by the pixel size and number of points, so the comparisons were
performed for short distances.

For objects that are represented by discrete binary functions, each interface contains high
frequency content that in turn causes ringing, making it difficult to directly compare to
methods that use smooth or filtered functions to represent objects. To mitigate this artifact,
the object was filtered at every axial slice with a Gaussian function (width = 4), and any
smoothing effects beyond the physical boundary of the cylinder were masked out. Because
the cylinder is infinite, the intensity pattern only varies in one dimension, and therefore the
lineouts shown contain all the information about the intensity pattern.

4.3 Multiple cylinders

Next, multiple infinite cylinders separated by various distances were tested. This allows for a
solution involving multiple scattering events to be calculated.

The validity of PB-BPM was tested against this case for two different cylinder geometries.
One involves all cylinders being aligned with the only offset being along the beam
propagation direction, such that the farther ones are ‘shadowed’ by the near ones. In parallel-
beam geometry under the projected-object approximation, such a configuration would look
like a single cylinder (with a different refractive index). The second case investigated was
with the cylinders displaced along the beam propagation direction and perpendicular to beam
propagation direction. The computational expense for this simulation is very high, so the
photon energy had to be decreased to 0.3 keV. The refractive index was maintained at that of
water for 30 keV, as discussed previously.
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4.4 Multiple spheres

Next, the intensities were compared for scattering with and without the projected object
approximation. The object was a system of two spheres aligned along the axis of propagation.
Water and calcium spheres were each tested at 30 keV for a variety of separations, and for
parallel- and cone-beam geometry. The mean differences were calculated comparing treating
the object with and without the projected-object approximation. The resulting intensities were
radially averaged as discussed in Sec. 4.1.

4.5 XCAT breast phantom

To demonstrate the use of CB-BPM on a clinically relevant phantom, the model was tested
with the XCAT breast phantom [69-71], developed by researchers at Duke University, the
University of Massachusetts, and the University of California Davis, to model coherent
propagation through approximately 5 cm of breast tissue. The detailed phantom includes
different refractive indices for adipose tissue, mammary tissue, skin, blood vessels, and
ligaments [72]. The pixel and grid sizes were specified by the available XCAT phantom.

5. Results

5.1 Homogeneous sphere
PB-BPM

(@)
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0.95

(d) Relative difference between models (e) Lineouts
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Fig. 2. Results of different forward models for a homogeneous sphere of water. Example
images from (a) beam propagation method, (b) full-wave Rytov, and (c¢) Mie solution for a 0.5
mm sphere of water propagated a distance of 2 m. The scale bar shown is shared among (a)-
(c). (d) Comparisons of relative error between the three methods as a function of propagation
distance. (e) Example lineout from the intensities shown in (a)-(c). All simulations used a 0.5
mm diameter sphere. The photon energy was reduced to 3 keV due to computation limitations
of the Mie solution. The object for PB-BPM was set to be equal to the scattering potential used
for the FWR method in order to ensure comparison of nearly-identical objects. The intensities
were radially averaged.

Figure 2 shows good agreement between the Mie, FWR, and PB-BPM approaches for a single
homogeneous sphere. In the example shown in Figs. 2(a)-2(c), the computation time for PB-
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BPM was 9 ms, for FWR it was 5 ms, and for the Mie solution it was 11.8 hours. Compared
to the Mie solution, for a modest loss in accuracy (<1%), PB-BPM offers a computation

speed increase of >10°.

5.2 Scattering from a single cylinder

(a) Relative difference between Mie and BPM (b) Lineouts
45
s 10002 ke,
e
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Fig. 3. Results of PB-BPM and Mie solution for an infinite cylinder. (a) Comparison of relative
difference versus the cylinder diameter between PB-BPM and the Mie solution. (b) Lineout of
scattering from a single cylinder. In this case, the diameter of the cylinder was 0.2 mm and the
propagation distance was 0.256 mm, as set by the Schéfer implementation’s geometry. Here,
the illuminating photon energy was 3 keV. The cylinder object treated with PB-BPM shown in
(b) was Gaussian filtered to avoid ringing artifacts due to discretization.

In the example shown in Fig. 3(b), the relative error is below 2x10~ . The computation time
for PB-BPM was 0.17 s, while for the Mie solution shown in Fig. 3(b) it was 8.3 hours. In the
case of the largest cylinder diameter, 0.3 mm, the computation time of the Mie solution was
12.3 hours. PB-BPM is >10’ times faster, and conveniently, does not depend on any of the
physical parameters in the simulation, but only on the grid size necessary for the calculation.

5.3 Multiple scattering from 3 cylinders

(a) (b)

Lineouts from 3 aligned cylinders
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Fig. 4. Simulation of three axially aligned cylinders. (a) Illustration of cylinder geometry and
propagation direction. (b) Lineout of the scattered intensity. Here, the pixel size was 0.25um,
the cylinder diameters were 2 um, and the photon energy was 0.3 keV. The cylinders were
displaced —8 pum, 0 um, and 12 pm from the center, respectively. Here, the mean difference
was <107,
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Fig. 5. Simulation of three cylinders offset in two dimensions. (a) Schematic of the three
cylinders and propagation direction. (b) Lineout of the intensity for the Mie solution compared
to PB-BPM. In this simulation, the pixel size was 0.125 um, the diameter was 2 um, and the
photon energy was 0.3 keV. The cylinders displaced in the (transverse, axial) coordinates from
the center by (-2, —4), (0, 0), and (3, 6) um, respectively. The mean difference between the
intensities was <107,

The examples shown in Figs. (4) and (5) illustrate that PB-BPM produces scattered intensities
with mean differences of the order 10~ compared to the Mie solution for the multiple
scattering events investigated. The computation time for PB-BPM was 1.4 seconds, and the
computation time for the Mie solution was 344 seconds.

The multiple-cylinder solution is the most computationally demanding of all, and
therefore it was necessary to use very low photon energies, small pixel sizes, and small
diameter cylinders. Furthermore, the geometrical constraints of this implementation, namely
the pre-set propagation distance, necessitated using an unphysically small detector pixel size
and a long wavelength. Importantly, this change of parameters allows us to examine non-
trivial diffraction of the cylinders, shown by the visible oscillations in in Figs. 4(b) and 5(b).

5.4 Simulations with cone-beam effects and multiple scattering within the object

The multiple scattering aspect of the BPM approach becomes particularly important for thick
and strongly scattering objects. An illustrative case is that of two spheres separated along the
axis of propagation. As expected, when the spheres are very close to each other, the
projected-object approximation is reasonably good and the difference between treating the
object with or without intra-sample scattering yields similar results. However, once the
distance between the spheres increases—even modestly—the difference becomes significant.
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Fig. 6. Comparison of intensity between the projected-object approximation and multiple
scattering events. (a) Schematic of the simulation geometry. (b) Mean difference caused by the
projected-object approximation for two axially separated spheres as a function of separation
distance. Errors are shown for calcium and water spheres, and for cone beam and parallel beam
propagation. (c) Example of two Ca spheres separated by 10 cm treated with CB-BPM and (d)
treated under the projected-object approximation followed by the Fresnel scaling theorem.
These simulations used 0.5 mm diameter spheres, and propagation distance of 1.5 m. In the
cone beam simulation, the distance between the source and the object was 3.5 m. The
illumination was 30 keV. The images were radially averaged to smooth propagation artifacts.
The color scale is shared between (c) and (d).

Figure 6 demonstrates that two spheres—separated even a small amount—produces non-
negligible multiple scattering events, and the intensity at the detector is significantly different
if treated under the projected-object approximation. The difference is even more pronounced
in cone-beam geometry compared to parallel beam geometry, as well as for more strongly
scattering material, for instance calcium rather than water. Not accounting for multiple
scattering, as is the case in Fig. 6(d), produces propagated intensity that simply looks like
what would result from a single sphere of a higher refractive index. Meanwhile, Fig. 6(c)
demonstrates a more complex intensity pattern, with interference caused by the second
sphere.

These errors do not arise as readily for incoherent imaging, such as traditional CT, where
the Fresnel fringes caused by intra-object diffraction do not coherently interfere due to the
relatively low spatial coherence of the beam, and therefore wave and refraction effects are not
readily observed. It is important to note that beam spatial and temporal coherence plays a
significant role in the visibility of diffraction effects in all types of imaging.
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5.5 Simulations with XCAT breast phantom
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Fig. 7. Simulation with XCAT breast phantom, showing results from PB-BPM (top row), CB-
BPM (middle row), and projected-object approximation followed by parallel beam propagation
(bottom row). (a)-(c) PB-BPM for propagation distances of 0.1, 5, and 8 m, respectively. (d)-
(f) show CB-BPM with a source-object (z;) distance of 3.5 m, and object-detector distances
(z2) of 0.1, 1.5, and 4.5 m, respectively. (g)-(i) show the projected-object approximation,
followed by parallel beam propagation of the wave over the remaining distance to the detector.
Color scales are shared among all images. The photon energy used was 30 keV.

Figure 7 shows the results of the XCAT breast phantom treated under different geometries
and approximations, demonstrating that CB-BPM is capable of handling arbitrary objects. It
is however important to ensure that the detector pixel size is small enough to properly sample
Fresnel fringes from the highest frequency features in the object. The grainy appearances in
Fig. 7(c), 7(f), and 7(i) are likely due to the fine structures such as ducts and blood vessels
being undersampled. The relatively minor amount of diffraction, particularly in the cone
beam case, suggests that in order to get more phase sensitivity for this type of object, a
combination of smaller detector pixels and/or a longer propagation distance should be used.
Still, the demonstration of CB-BPM with these XCAT phantoms shows a promising
capability to sensitively model soft tissues in cone-beam geometry.
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6. Discussion

Many imaging applications such as conventional medical X-ray CT use multiple projections
to tomographically reconstruct a 3D image [73]. However, for phase imaging where
diffraction and cone-beam effects become important, simply performing filtered
backprojection (FBP) may not be sufficient [74]. Indeed, a forward and/or backward model
that accounts for diffraction is essential for coherent phase imaging. Multi-slice parallel beam
reconstruction has been demonstrated in the optical regime [37], and here the forward model
has been explored in silico for X-rays, along with novel cone-beam multi-slice propagation.

Other propagation methods, such as the wave propagation method (WPM), are accurate
for non-paraxial waves but require increased computational complexity [33,37]. PB-BPM and
CB-BPM utilize fast Fourier transforms, making them a good choice for iterative
reconstruction, where the forward model has to be computed many times. Efficient proof-of-
principle computational prototyping is also essential for imaging system design.

CB-BPM loses accuracy for high-angle, non-paraxial scattering, and can quickly become
computationally intensive for large numbers of slices within the object. It is therefore less
appropriate for longer-wavelength imaging of large, strongly scattering objects. Furthermore,
it has been demonstrated here well within the Fresnel regime, and is not intended to propagate
over distances that would be described by small Fresnel numbers that fall within the
Fraunhofer regime. It is also important to note that CB-BPM does not take reflections or
incoherent scattering events into account.

7. Conclusion

In this work, the use of PB-BPM has been validated for X-ray wavelengths, and a cone-beam
multi-slice beam propagation method, called CB-BPM, has been described and demonstrated.
This technique can model arbitrary sized objects and account for diffraction and
magnification within that object. This allows for increased flexibility in a forward model that
is capable of treating a variety of objects, only requiring that the paraxial approximation is
valid and that the slices are sufficiently thin. Furthermore, the approximations made by this
forward model are already within the scope of assumptions made for PB-XPCI when phase
retrieval is achieved with the transport-of-intensity equation.

The computation time of CB-BPM depends only on the size of the grids, for instance the
number of pixels and how many slices the object is divided into. Future work of interest will
be validating this model experimentally and incorporating it into a reconstruction framework,
and combining it with machine learning approaches. Interesting extensions also include
implementations with asymmetric grid or pixel sizes or in regimes with partial spatial
coherence.
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